Инженерный справочник DPVA.xyz (ex DPVA-info)

Проект Карла III Ребане и хорошей компании

Таблицы DPVA - Инженерный Справочник

Free counters!
Адрес этой страницы (вложенность) в справочнике DPVA.xyz:  главная страница  / / Техническая информация / / Математический справочник / / Линейная алгебра. Вектора, матрицы, определители, миноры, детерминанты...  / / Сложение векторов. Векторная сумма. Правила сложения векторов. Геометрическая сумма. Он-лайн калькулятор.


  Вы сейчас находитесь в каталоге:
   Линейная алгебра. Вектора, матрицы, определители, миноры, детерминанты...   

Сложение векторов. Векторная сумма. Правила сложения векторов. Геометрическая сумма. Он-лайн калькулятор.

Сложение векторов. Векторная сумма. Правила сложения векторов. Геометрическая сумма. Он-лайн калькулятор

В механике существуют два типа величин:
  • скалярные величины, задающие некоторое числовое значение - время, температура, масса и т.д.
  • векторные величины, которые вместе с некоторым числовым значением задают направление - скорость, сила и т.д..
Рассмотрим сначала алгебраический подход к сложению векторов.

Покоординатное сложение векторов.

Пусть даны два вектора, заданные покоординатно ( чтобы вычислить координаты вектора, нужно вычесть из соответствующих координат его конца соответствующие координаты его начала, т.е. из первой координаты - первую, из второй - вторую и т.д.):

сложение векторов

Тогда координаты вектора, получившегося при сложении этих двух векторов вычисляются по формуле:

Покоординатное сложение векторов

В двумерном случае все абсолютно анологично, просто отбрасываем третью координату.

Теперь перейдем к геометрическому смыслу сложения двух векторов:

При сложении векторов нужно учитывать и их числовые значения, и направления. Есть несколько широко используемых методов сложения:

  • правило параллелограмма
  • правило треугольника
  • тригонометрический способ

Правило параллелограмма. Сложение векторов по правилу параллелограмма.

Правило параллелограмма. Сложение векторов по правилу параллелограмма.

Процедура сложения векторов по правилу параллелограмма заключается в следующем:

  • нарисовать первый вектор, учитывая его величину и направление
  • от начала первого вектора нарисовать второй вектор, также используя и его величину, и его направление
  • дополнить рисунок до параллелограмма, считая, что два нарисованных вектора - это его стороны
  • результирующим вектором будет диагональ параллелограмма, причем его начало будет совпадать с началом первого (а, значит, и второго) вектора.

Правило треугольника. Сложение векторов по правилу треугольника.

Правило треугольника. Сложение векторов по правилу треугольника.

Сложение векторов по правилу треугольника заключается в следующем:

  • нарисовать первый вектор, используя данные о его длине ( числовой величине) и направлении
  • от конца первого вектора нарисовать второй вектор, также учитывая и его размер, и его направление
  • результирующим вектором будет вектор, начало которого совпадает с началом первого вектора, а конец - с концом второго.

Тригонометрический способ. Сложение векторов тригонометрическим способом.

Тригонометрический способ. Сложение векторов тригонометрическим способом. Результирующий вектор сложения двух компланарных векторов может быть вычислен с помощью теоремы косинусов:
  • Fрез. = [ F12 + F22 -2 F1 F2 cos(180о-α) ]1/2         (1)
    • где
      • F = числовое значение вектора
      • α = угол между векторами 1 и 2
Угол между результирующим вектором и одним из исходных векторов может быть вычислен по теореме синусов:
  • β = arcsin[ F*sin(180o-α) / FR ]         (2)
    • где
      • α = угол между исходными векторами

Пример - сложение векторов.

Сила 1 равна 5кН и воздействует на тело в направлении, на 80o отличающемся от направления действия второй силы, равной 8 кН.

Результирующая сила вычисляется следующим образом:

Fрез = [ (5 кН)2 + (8 кН)2 - 2 (5 кН)(8 kН) cos(180o - (80o)) ]1/2

    = 10,14кН

Угол между результирующей силой и первой силой равен:

β= arcsin[ (8кН) sin(180o - (80o)) / (10,14кН) ]

    = 51o

А угол между второй и результирующей силой можно посчитать следующим образом: as

α = arcsin [ (5 кН) sin(180o - (80o)) / (10,2 кН) ]

    = 29o

Он-лайн калькулятор сложения векторов.

Калькулятор ниже может быть использован для любвых векторных величин ( силы, скорости и т.д.) Точка начала вектора совпадает с началами обоих исходных векторов.

 Величина (числовое значение) вектора 1 - F1

Величина (числовое значение) вектора 2 - F2

Угол между векторам 1 и 2 (в градусах)

Ответ:

- длина (величина) результирующего вектора

o - угол между результирующим вектором и первым вектором

Распечатать: Сложение векторов. Векторная сумма. Правила сложения векторов. Геометрическая сумма.
Дополнительная информация от Инженерного cправочника DPVA, а именно - другие подразделы данного раздела:
  • Понятие вектора. Действия с векторами, их свойства - сложение и вычитание векторов, умножение на число, коллинеарность. Скалярное умножение (произведение) векторов. Проекции, разложение векторов, координаты, действия в координатах, взаимное расположение
  • Вы сейчас здесь: Сложение векторов. Векторная сумма. Правила сложения векторов. Геометрическая сумма. Он-лайн калькулятор.
  • Скалярное произведение векторов. Он-лайн калькуляторы скалярного произведения и угла между векторами по координатам.
  • Векторное произведение двух векторов. Он-лайн калькулятор.
  • Метод координат на плоскости. Расстояние между точками. Расстояние до точки от начала координат. Координаты точки, делящей отрезок в отношении λ . Координаты середины отрезка. Координаты центра тяжести треугольника.
  • Уравнения прямой на плоскости. Общее уравнение прямой. Уравнение прямой "в отрезках"; прямой с угловым коэффициентом. Уравнение пучка прямых, проходящих через точку. Уравнение прямой, проходящей через 2 точки. Нормальное уравнение прямой.
  • Взаимное расположение прямых на плоскости. Расположение прямых - условие параллельности, условие перпендикулярности, условие пересечения по углом φ , нахождение общих точек прямых. Расстояние от точки до прямой.
  • Матрицы. Действия над матрицами. Свойства операций над матрицами. Виды матриц.
  • Определитель = детерминант 2-го, 3-го, n-го порядка. Обозначение, правила вычисления. Правило треугольников, разложение по элементам строки. Алгебраическое дополнение, минор к элементу. Примеры вычисления определителей = детерминантов
  • Системы линейных алгебраических уравнений (СЛАУ). Общий вид, матрица системы, СЛАУ в матричной форме, решение СЛАУ. Разновидности СЛАУ - совместная, несовместная, определенная, неопределенная, однородная, неоднородная... Обратная матрица и ее нахождение.
  • Методы решения невырожденных систем линейных алгебраических уравнений (СЛАУ) - по формулам Крамера, матричный способ. Метод Гаусса = метод последовательного исключения неизвестных при решения систем линейных алгебраических уравнений. Наличие решений.
  • Собственные векторы, собственные значения матрицы и их нахождение. Характеристическое уравнение матрицы. Подпространство собственных векторов.
  • Поиск в инженерном справочнике DPVA. Введите свой запрос:
    Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.
    Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.