Инженерный справочник DPVA.xyz (ex DPVA-info)

Проект Карла III Ребане и хорошей компании

Группа в FaceBook - тыц!


Free counters!
Адрес этой страницы (вложенность) в справочнике DPVA.xyz:  главная страница  / / Техническая информация / / Математический справочник / / Геометрические фигуры. Свойства, формулы: периметры, площади, объемы, длины. Треугольники, Прямоугольники и т.д. Градусы в радианы.  / / Объемы подобных тел.


  Вы сейчас находитесь в каталоге:
   Геометрические фигуры. Свойства, формулы: периметры, площади, объемы, длины. Треугольники, Прямоугольники и т.д. Градусы в радианы.   

Объемы подобных тел.

от

Формулы объема

Объемы подобных тел.

Малый кубБольшой куб

Объемы подобных тел пропорциональны кубам соответствующих линейных размеров.

Например, на рисунке выше показаны два куба, сторона одного из которых в 3 раза больше стороны другого.

Объем тела с рисунка а) V=x*x*x=x3

Объем тела с рисунка б) V=3x*3x*3x=27x3

Следовательно, тело на рис. б) имеет объем объем 33, т.е. его объем в 27 раз больше объема тела на рис. а).

Пример. Определение массы тела, подобного данному.

Масса автомобиля 1050 кг. Изготовлена модель автомобиля в масштабе 1:60. Определить массу модели автомобиля, если она слелана из того же материала, что и сам автомобиль.

Решение:

(Объем модели)/(объем автомобиля)=(1/60)3, поскольку объемы подобных тел пропорциональны кубам соостветствующих линейных размеров.

Масса =плотность*объем, а так как автомобиль и модель сделаны из одного материала, значит:

(Масса модели)/(Масса автомобиля)=(1/60)3

Следовательно,

Масса модели = (Масса автомашины) *(1/60)3=(10050)/(603)=0,0049 кг=4,9г.

Отношение объема к площади поверхности любого физического тела. Один из важнейших инженерных приемов.
Дополнительная информация от Инженерного cправочника DPVA, а именно - другие подразделы данного раздела:
  • Плоские фигуры. Свойства, стороны, углы, признаки, периметры, равенства, подобия, хорды, секторы, площади и т.д.
  • Объемы простых тел. Прямоугольный параллелепипед, Цилиндр, Пирамида, Конус, Сфера, Параллелепипед.
  • Площадь поверхности и объем геометрических тел. Прямые призмы. Правильные пирамиды. Круговые цилиндры. Круговые конусы. Шар и его части. Примерно 8 класс (14 лет)
  • Объемы и площади поверхностей усеченных пирамид и конусов.
  • Объем и площадь шарового слоя и шарового пояса.
  • Вы сейчас здесь: Объемы подобных тел.
  • Площади неправильных фигур, объемы неправильных тел. Средняя величина сигнала. Формулы и способы расчета площади.
  • Вычисление поверхностей, боковых поверхностей, расстояний до центров тяжести и объемов Цилиндра, Пирамиды, Полого цилиндра (трубы), Косорезанного цилиндра, Шара, Шарового сектора, Шарового сегмента, Конуса, Усеченной пирамиды, Усеченного конуса, Тора.
  • Пересечение кругов и окружностей. Площадь пересечения и прочие элементы задачи.
  • Формулы развёрток врезки штуцера в трубу, шар, конус, отвод (тор), сечения трубы, конуса плоскостью, вырезов отверстий в плоскости, трубе, конусе. Сочленение труб и резервуаров. Пересечение труб, штуцеров, сгонов.
  • Формулы перевода градусов в радианы (градусной меры угла в радианную), длин, площадей и объемов основных геометрических фигур.
  • Расчет объема заполнения и других физических характеристик содержимого горизонтального цилиндрического резервуара (бака, трубы) по уровню.
  • Расчет объема заполнения и других физических характеристик содержимого шарового резервуара (бака) по уровню.
  • Расчет объема заполнения и других физических характеристик содержимого цистерны с шаровыми заглушками по уровню.
  • Поиск в инженерном справочнике DPVA. Введите свой запрос:
    Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.
    Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.